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Abstract—High-performance computing (HPC) environments
supporting data-intensive applications need multidomain network
performance measurements from open frameworks such as perf-
SONAR. Detected network-wide correlated anomaly events that
impact data throughput performance need to be quickly and accu-
rately notified along with a root-cause analysis for remediation. In
this paper, we present a novel network anomaly events detection
and diagnosis scheme for network-wide visibility that improves
accuracy of root-cause analysis. We address analysis limitations in
cases where there is absence of complete network topology infor-
mation, and when measurement probes are mis-calibrated leading
to erroneous diagnosis. Our proposed scheme fuses perfSONAR
time-series path measurements data from multiple domains using
principal component analysis (PCA) to transform data for accu-
rate correlated and uncorrelated anomaly events detection. We
quantify the certainty of such detection using a measurement
data sanity checking that involves: 1) measurement data repu-
tation analysis to qualify the measurement samples and 2) filter
framework to prune potentially misleading samples. Lastly, using
actual perfSONAR one-way delay measurement traces, we show
our proposed scheme’s effectiveness in diagnosing the root-cause
of critical network performance anomaly events.

Index Terms—Multi-domain Network Performance
Monitoring, Anomaly Event Detection, Root-cause Diagnosis
Certainty.

I. INTRODUCTION

D ISTRIBUTED computing applications are increasingly
being developed in scientific communities in areas such

as biology, geography and high-energy physics. These commu-
nities transfer data on a regular basis between computing and
collaborator sites at high-speeds on multi-domain networks that
span across continents. To ensure high data throughputs through
effective network monitoring, there is a rapidly increasing trend
to deploy multi-domain, open measurement frameworks such as
perfSONAR [1]. The perfSONAR framework has been devel-
oped over the span of several years by worldwide-teams and
has over 1400 measurement points all over the world.

However, providing scientists and network operators with a
network-wide performance visibility based on the perfSONAR
measurement archives within data-intensive science collabora-
tions such as [2] poses several challenges [3]–[5]. It requires
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automated techniques to query, analyze, detect and diagnose
prominent network performance anomaly events that hinder
data transfer performance. The general lack of network topol-
ogy information accompanying the multi-domain measure-
ments data compounds the challenges in root-cause diagnosis
of performance bottlenecks. More specifically, it is non-trivial
to identify and locate network-wide anomaly events that impact
data throughput performance without publicly accessible topol-
ogy services for measurement points [6], [7]. The identification
and location diagnosis of anomaly events is particularly chal-
lenging in cases with measurement data spanning multiple
network paths.

Fig. 1 for example shows a typical perfSONAR dashboard
with color-coded periodic throughput (‘Reds’ are ≤ 100 Mbps,
‘Yellows’ are < 500 Mbps, and ‘Greens’ are ≥ 500 Mbps) mea-
surement status event notifications for different paths, specifi-
cally between ESnet and several European sites. Although the
dashboard serves the purpose of interesting events notification,
pertinent issues essential to ascertain the significance of such
events remain unanswered, such as: Do the events in Sets II
and III correspond to a common network anomaly event? If
yes, then what are the root-causes of such anomaly events?
Do events in Set III belonging to the same destination signify
anomaly correlation? Do events in Set II belonging to the same
source signify anomaly correlation?

Answering such critical questions for effective troubleshoot-
ing becomes even more challenging as the publicly accessible
measurement samples collected from perfSONAR deployments
often have measurement mis-calibration or issues such as
invalid measurement data. Examples of issues include nega-
tive one-way delay values due to faulty clock synchronization
between measurement servers. Such issues result in erro-
neous features [8], or too dense/sparse or irregular (i.e., long
data collection gaps) measurement sampling frequency leading
to missed anomaly events and exponential anomaly detec-
tion time [9]. Such measurement mis-calibration eventually
manifests in triggering of erroneous detections and useless
diagnosis/notifications.

In this paper, we present a novel scheme that can fuse time-
series of perfSONAR path measurements from multiple domains
with common intermediate hops for: (a) correlated anomaly
event detection, and (b) a simultaneous sampling trend anal-
ysis for accurate and timely notifications. The anomaly event
detection involves fusion of multiple time-series to transform
perfSONAR measurements onto new axes through PCA [10]
(i.e., principal component analysis), which obviates the need
of complete network topology information. This transformation
extracts common features upon which our earlier adaptive
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Fig. 1. perfSONAR dashboard with throughput measurement notifications for
ESnet to European sites.

plateau event detection (APD) scheme [9] is applied to detect
uncorrelated anomaly events (change-points from statistical
norm) at a network-wide level. These detected network anoma-
lies are then compared against the Q-statistic threshold to
isolate the correlated anomaly events. This approach leverages
the fact that the PCA technique is best suited to be configured
by network operators as a “black-box” [11], [12] for correlation
analysis.

To address the problem of misleading data use within
the anomaly detection analysis, we perform measurement
data sanity checking using an adaptive measurement data
Reputation Analysis coupled with a novel Filter Framework.
The Reputation Analysis scheme assigns reputation scores to
measurement paths based on domain-specific historical sam-
pling trends involving factors such as: validity of the measured
data [8], and sampling periodicity [9], that may potentially
cause measurement mis-calibration. The multi-path reputation
scores are then translated into “certainty” of detection quantifi-
cation which provides a network-wide meta-perspective for the
network operators in a multi-domain environment. The Filter
Framework is used subsequently to apply temporal and spatial
filters to the multi-path measurements for root-cause identifi-
cation of uncorrelated anomalies, as well as for pruning the
misleading measurement features in case of “low certainty of
detection” of anomaly events.

Using synthetic data mimicking actual perfSONAR traces,
we compare our scheme with similar anomaly detection
schemes demonstrating the scheme’s effectiveness with high
detection accuracy and low false positive rate. We also imple-
ment the proposed data sanity checking scheme in our Narada
Metrics framework [13] that features several perfSONAR
extensions, and is being used in actual multi-domain enter-
prises. We use the Narada Metrics framework to collect
both short-term (one day) and long-term (one month) perf-
SONAR one-way delay measurement datasets from United
States Department of Energy (DOE) lab sites (e.g., FNAL,
ORNL) and perform multiple case studies for performance
evaluation of the proposed scheme. Using these case studies,
we demonstrate that our scheme can fuse multi-domain mea-
surement data in order to: (a) effectively ascertain correlation
among anomaly events, (b) leverage a source-side vantage point
to diagnose whether an anomaly event location is local or in
an external domain, (c) pin-point potential root-cause loca-
tions for both correlated and uncorrelated anomalies without
complete network topology information, and (d) intelligently

prune potentially misleading features in the measurement data
to increase the certainty of detection.

The remainder paper organization is as follows: Section II
describes the related work. Section III presents background on
plateau detection and the PCA technique. Section IV presents
our PCA-APD-Q-statistic scheme. Section V discusses the cer-
tainty quantification of anomaly events. In Section VI, we
evaluate the accuracy of our proposed scheme and perform case
studies to isolate bottleneck anomaly event locations with actual
measurement traces. Section VII concludes the paper.

II. RELATED WORK

A. Network Anomaly Event Detection Techniques/Tools

To assist network operators in troubleshooting bottle-
necks (e.g., prolonged congestion events or device mis-
configurations) in multi-domain high-speed networks, a num-
ber of smart and effective network monitoring tools based on
statistical measurement data analysis techniques, such as [14]–
[21] have been developed. Particularly, in [14], the authors
provide a user-level Internet diagnosis tool which is used for
diagnosing network performance problems. A passive net-
work monitoring system is described in [15] that monitors
traffic between PlanetLab sites to detect anomalous behav-
ior. Further, in [16], the authors propose Information Plane
(iPlane), designed as a service to obtain information about
Internet conditions. Authors in [17] present Crowdsourcing
Event Monitoring (CEM) approach to detect, isolate and report
service-level network events. Many of these analysis tech-
niques/tools however lack automation provided by our work,
and are not useful in perfSONAR measurement data con-
text to ascertain anomaly event correlation for network-wide
performance visibility and effective troubleshooting.

B. Topology-Dependent Correlated Anomaly Detection

Alternately, there have been works such as [3], [6], [7], [12],
[22]–[25] that use network topology information for corre-
lated anomaly event detection to localize bottlenecks. Authors
in [12] use Kalman-filter for anomaly detection and build a
traffic matrix of an enterprise network to overcome link basis
limitations. A root-cause analysis and anomaly localization
tool called Pythia is proposed in [3] that uses perfSONAR
measurements. In [25], a Service-quality Characterization of
Internet-path (SCI) scheme is proposed that relies on delay and
loss measurements collected from vantage points at two ends
of a path. Similarly in [26], use of QoS parameters collected
from vantage points at two ends of network paths for detect-
ing network anomaly events is proposed. Our work closely
relates to NICE (Network-wide Information Correlation and
Exploration) framework proposed in [6] for analyzing anomaly
events through data correlations. In our recent work [7], we
used topology-aware anomaly detection for location diagno-
sis of correlated anomaly events. Most of these prior works
have a strict requirement for complete topology information,
which is a well known open research problem as discussed in
[27]. Whereas, in this work, we propose a partially topology-
agnostic network-wide anomaly event detection and diagnosis
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scheme for perfSONAR deployments. Our work’s novelty is
that we address anomaly event cases lacking publicly available
topology information accompanying measurement data sets to
isolate bottleneck root-cause location.

C. PCA-Based Correlated Anomaly Detection

PCA based measurement data projection schemes, such as
[11], [28]–[30] have recently been proposed by researchers to
detect and diagnose anomalies in the absence of network topol-
ogy information. Authors in [11] use PCA technique on passive
measurements for network anomaly detection on a network link
basis. A PCA subspace projection methodology is proposed in
[29] where the authors apply PCA on data that have already
undergone random projection to detect anomaly events. In our
earlier work [30], we used PCA to isolate and diagnose the loca-
tions of the correlated anomalies in the network in the absence
of complete network topology information. Our work builds
upon these earlier works, and extends them in context of mea-
surement data reputation analysis and filtering to address cases
where misleading data in the measurement samples collected
from perfSONAR archives impact anomaly detection accuracy.

D. Measurement Data Sanity Checking

Guidelines for measurement best practices and the perils of
using potentially misleading data were first outlined in [8]. Our
work on using sanitized measurement data for anomaly detec-
tion is closest to the work by authors in [31], where an anomaly
detection system is developed based on prediction of upper and
lower dynamic thresholds of various time-varying data trends.
Reputation-based trust schemes have long been used by the
scientific community for decision making in shared environ-
ments. Feedback-based reputation management schemes have
been proposed for large open environments in e-commerce
[33], peer to peer (P2P) computing [34], and wireless systems
[35]. Our work is the first in effectively using reputation-based
sanitized measurement data gathering, and lays the founda-
tion for addressing the reputation management of measurement
points or domains.

III. BACKGROUND

In this section, we first define anomaly events that are of
interest to network operators, and give an overview of adap-
tive plateau event detection (APD) that we rely in this paper
for automatic anomaly event notifications. Following this, we
formally introduce the PCA technique which we will leverage
along with APD and Q-statistic in order to establish correlation
between such network-wide anomaly events.

A. Anomaly Events

One of the significant challenges in dealing with perfSONAR
measurement datasets is to decide which kind of network events
(i.e., ‘Reds’ in Fig. 1) need to be labeled and notified as
anomaly events that may affect data-intensive application per-
formance bottlenecks. Various traffic related anomaly events

Fig. 2. Plateau-detector thresholds illustration.

are caused due to IP route/AS path change events that involve
traffic re-routing on backup paths due to ISP traffic migra-
tion for maintenance reasons. These events manifest in the
form of spikes, dips, bursts, persistent variations and plateau
trends in network performance metrics such as round-trip delay,
available bandwidth and packet loss obtained through end-to-
end active measurements. Based on documented experiences
from network operators and data intensive science application
users [4] and based on our own discussions with other HPC
network operators (e.g., ESnet, Internet2, GEANT), the noti-
fication of ‘plateau anomalies’ shown in Fig. 2 are the most
worthy to be notified. These anomaly events are commonly
known to impact data transfer speeds at the application-level
on high-speed network paths.

B. Adaptive Plateau Detector

Network operators, when analyzing a measurement time-
series of network performance metrics, typically look for
plateau event trends through visual inspections and seek for
automated notification of such network-wide detected anomaly
events. Variants of plateau anomaly event detectors have been
developed and adopted in large scale monitoring infrastruc-
tures such as NLANR AMP [36] and SLAC IEPM-BW [4],
which are predecessors to the perfSONAR deployments. These
detectors use static configurations of ‘sensitivity’ and ‘trigger
elevation threshold’ parameters to detect that a plateau event or
a ‘change event’ has occurred.

A plateau event is detected if the most recent measurement
sample value crosses the upper or lower thresholds of the sum-
mary (i.e., TSU , TSL ) and quarantine (i.e., TQU , TQL ) buffers as
determined by the settings of sensitivity and trigger elevation
parameters. The summary buffer is used to maintain sample
history that indicates the normal state (before anomaly event
occurs), and a quarantine buffer is used to store outlier data
samples that are twice the normal state sample values. The
sample counts in above buffers are used to maintain trigger
count values over a pre-configured trigger duration before an
alarm of anomaly event occurrence (indicated by the cross mark
in Fig. 2) is notified. The trigger duration before samples are
marked for impending anomaly states (triangle symbols shown
in Fig. 2) should be chosen long enough to avoid false alarms
due to noise events corresponding to intermittent spikes, dips,
or bursts.
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Our earlier adaptive plateau-detector (APD) algorithm [9]
scheme avoids manual calibration of ‘sensitivity’ and ‘trigger
elevation threshold’ parameters and has been shown to be more
accurate than earlier static plateau detection schemes [36] [4]
over diverse profiles of measurement samples on network paths.
Given that we rely on APD in this paper for detecting anomaly
events in the measurements, we will illustrate the advantages
of using APD later in Section VI-A. Specifically, we show
how APD outperforms plateau detectors using static thresh-
olds (SPD) in detecting uncorrelated anomalies of smaller
magnitudes with much fewer false alarms.

C. Principal Component Analysis and Q-Statistic

Root-cause analysis of detected anomaly events at a network-
wide level in the absence of complete network topology infor-
mation is non-trivial as explained in Section I. Establishing
correlation between anomaly events is important to not only
diagnose the detected anomaly event location, but also to deter-
mine whether resolving cause of one event can auto-resolve
multiple other related events in the troubleshooting process.

We use PCA technique along with a Q-statistic [10], [37] test
on perfSONAR multi-path time series data in order to isolate
correlated anomaly events. The reason to use PCA is because it
is a dimensionality-reduction approach that involves mapping
a set of data points within time-series onto new coordinates.
The new coordinates are called the principal axes or principal
components that help to extract common features in the data
points of multiple time-series, and thus visually separate the
normal behavior from anomalous behavior.

Let Y be the n × m time-series measurement matrix, which
denotes the time-series of all links and centered to have zero
mean, with n being the number of rows and m being the number
of columns. Thus, each column denotes the time-series of the
i-th link and each row j represents an instance of all the links.
Applying PCA to Y yields a set of m principal components,
{vi }m

i=1, where the first principal vector v1 is given as:

v1 = arg max‖v‖=1
‖Yv‖ (1)

Where ‖Yv‖ is proportional to the variance of the data mea-
sured along v. Proceeding iteratively, the k-th principal compo-
nent vk is given as:

vk = arg max‖v‖=1
‖(Y −

k−1∑
i=1

YvivT
i )v‖ (2)

The first principal component v1 captures the maximum vari-
ance. The next principal component captures the maximum
variance among the remaining orthogonal directions. After
choosing the principal components or axes, the dataset can be
projected onto the new axes. The subspace method that we use
separates principal components into normal and abnormal prin-
cipal components. The normal principal components reside in
the normal subspace Sno whereas the abnormal principal com-
ponents reside in the abnormal subspace Sab. In the pioneering
PCA work [11], the authors observed that the normal measure-
ments, i.e., lower k components reside in Sno, and the abnormal

measurements i.e., (n − k) components reside in Sab. From our
analysis of large number of perfSONAR measurement traces,
we found that the correlated anomaly events always reside
in the lower k components or Sno, subspace and uncorrelated
anomaly events always reside in the (n − k) components or Sab

subspace. This finding of ours is consistent with the findings in
[11] in terms of establishing correlation among measurement
traces. Hence, the observation from our experiments is guiding
our decision to use the subspace method to effectively sepa-
rate correlated and uncorrelated anomaly events by selecting
the lower k components.

Now let y = y(t) denote a n-dimensional vector of measure-
ments (for all links) from a single time step t. Detection of
anomalies relies on the decomposition of link measurements
y = y(t) at any step into normal and abnormal components,
y = yno + yab, the yno corresponds to modeled normal mea-
surements (the projections of y onto Sno), and the yab cor-
responds to residual measurements (the projections of y onto
Sab), and can be computed as:

yno = PPT y = Cnoy

yab = (I − PPT )y = Caby (3)

where P = [v1, v2, v3, . . . , vk] is formed by the first k principal
components which capture the dominant variance in data. The
matrix Cno = PPT represents the linear operator that performs
projection onto normal subspace Sno, and the Cab represents
the projection onto the abnormal subspace Sab.

As described in [11], a volume anomaly event typically
results in a large change to yab; thus, a useful metric for detect-
ing abnormal measurements pattern is squared prediction error
(SPE):

SPE ≡ ‖yab‖2 = ‖Caby‖2 (4)

We consider network measurements to be normal if SPE ≤ δ2,
where δ2 denotes the threshold for the SPE at the 1 − α confi-
dence level. Such a statistic test for the SPE residual function is
known as Q-statistic, which was developed in [10] to deal with
residuals related to principal component analysis. We use the
Q-statistic to analyze the significance of the differences among
the data sets by capturing the correlated anomalies in the first
k principal components that reside in the normal measurements
subspace Sno.

IV. ANOMALY EVENT DETECTION

In this section, we present our proposed PCA-APD-Q-
statistic based network anomaly event detection and diagnosis.

A. Scheme Overview

In Fig. 3, we show the components and steps involved in
our proposed network-wide anomaly event detection and cer-
tainty diagnosis scheme. The steps begin with data collection
through querying of distributed measurement archives (acces-
sible at an address e.g., curl http://fnal-owamp.es.net:8085/
esmond/perfsonar/archive) by using perfSONAR-compliant
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Fig. 3. Schematic diagram of our proposed network-wide anomaly event
detection and certainty diagnosis.

web service clients. The site list of measurement archives
(MAs) that are available for query can be selected using a
global lookup service hosted by the perfSONAR community.
This service registers the addresses of all openly-accessible
measurement archives within individual domains. Upon data
collection, the multi-path time-series data is fed simultane-
ously to Anomaly Event Detection and Data Sanity Checking
components.

The Data Sanity Checking component performs reputation
analysis over the collected samples. In case of a correlated
anomaly event detection, the root-cause location isolation is
easier, and the reputation of the entire measurement data set
influences the overall certainty of the detection. However,
uncorrelated anomaly events are rather difficult to isolate in
the absence of network topology information as explained in
Section I, and thus requires further processing that involves
passing the multi-path time-series data through the filter frame-
work. Output of the filter framework dictates whether to prune
the potentially misleading data or perform a destination-to-
source conversion to look for correlated anomaly events. In
either case, recursive anomaly detection is performed until cor-
related anomaly events are detected and root-cause locations
are isolated. Finally, Anomaly Event Detection and Data Sanity
Checking schemes together enable the ranking of detected
events by certainty of detection in order to provide a network-
wide meta-perspective for effective troubleshooting.

B. PCA-APD-Q-Statistic Analysis

Fig. 4 shows the sequence of steps involved in our
PCA-APD-Q-statistic based anomaly detection and diagno-
sis scheme. Through standardized request/response messages,
active measurement time series data relating to end-to-end per-
formance measurement tools such as OWAMP (one-way delay
as specified in IETF RFC 4656) are downloaded for any given
site (i.e., Source Site A). The downloaded multi-path time series
datasets are in the form of JSON object files, which are then
processed using parsing for applying PCA technique in the
subsequent step.

The output of PCA is the fused reoriented data comprising
of eigen vectors, where the first eigen vector captures maxi-
mum variability and the last is left with minimum variability.
What this translates into in-reality is that - the data projection
using the first eigen vector has variability that is common to

Fig. 4. PCA-APD scheme components diagram.

most of datasets and the last eigen vectors have the variabil-
ity that is least common in the dataset (e.g., variability present
in only one dataset amongst all). Next, data dimension selec-
tion is performed on the fused reoriented data. For example,
if we are interested only in the common anomalies, we will
select only the first principal component as described in the
previous section. After the data dimension (number of eigen
vectors) is selected, the data is projected using the principal
components, and is passed as input for APD algorithm to detect
anomalies.

Although most of the correlated anomalies subspace are cap-
tured in the first, or first and second principal components, it
is likely that the normal subspace is also located in the lower
k-components. In order to accurately capture all of the anomaly
events within measurement time-series, we leverage our APD
scheme on the PCA transformed (or fused reoriented) measure-
ment data. To further classify the correlated and uncorrelated
anomaly events, we employ the Q-statistic test described earlier
in Section III-C. Moreover, if we find that the site-of-interest
(i.e., Source Site A) is featured in many or all of the corre-
lated anomaly event paths, we can conclude that the anomaly
event root-cause is local. If otherwise, we can conclude that
the anomaly event root-cause is in an external domain, and
above sequence of diagnosis steps can be applied to other
domains whose measurement data is accessible with the hope
of localizing the root-cause in one of the external domains.

To substantiate the above rationale for correlated and uncor-
related anomalies, we use synthetic time-series measurements
for study purposes that comprise of 16 traces of one-way delay
measurements collected from perfSONAR archives that do not
have any anomaly events. Into these traces, we inject 5 anomaly
events within a common time period window to create a corre-
lated anomaly event, and also inject 16 uncorrelated anomaly
events in other time period windows.

As shown in Fig. 5, all the correlated anomaly events are
captured in the first principal component, and an uncorrelated
anomaly event is captured in the second principal component.
In repeated studies with different synthetic measurement time-
series, we found that all the correlated anomaly events are
captured mostly in the first principal component, and at worst
in the second principal component in a very few number of
instances.
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Fig. 5. Correlated and uncorrelated anomaly subspace separation with PCA
application.

Fig. 6. Measurements of normal space vector squared magnitude (‖yno‖2,
upper), and residual space vector squared magnitude (‖yab‖2, lower) for the
synthetic data.

As shown in Fig. 6, we separate the link measurements y
into normal subspace and residual subspace. The lower part
of the figure shows the SPE of y’s projection in the residual
subspace yab, and the upper part shows y’s projection in the
normal subspace yno. On these plots, we have marked the cor-
related anomalies with crosses (x) and uncorrelated anomalies
with circles (o). In the lower part of the figure, it is clear that
the magnitude of the residual vector yab is dominated by uncor-
related anomalies rather than correlated anomalies. As a result,
it is difficult to discern the correlated and uncorrelated anoma-
lies in the residual vector yab. However, in the upper part of the
figure, only correlated anomalies along with normal measure-
ment data are captured in the projection. Thus, the magnitude
of normal measurement data is obviously different from the cor-
related anomaly measurement data, which makes the detection
of anomalies much easier to distinguish.

Above observation shows that the normal vector yno is suit-
able to detect correlated anomalies at a network-wide level.
However, we still want to find uncorrelated anomalies. In Fig. 6,
only correlated anomalies are captured in the normal vector.
Although residual vector can capture all the correlated and
uncorrelated anomalies, it is difficult to discern them because
only the first principal axis is selected in the Fig. 6 to cap-
ture normal traffic and correlated anomalies. Hence, we need
to increase principal axes to capture uncorrelated anomalies.

Fig. 7. Measurements of normal space vector squared magnitude ‖yno‖2 (P =
[v1], upper) and (P = [v1, v2, v3, v4], lower) for the synthetic data.

In the top-portion of Fig. 7, only correlated anomalies are
captured in the first principal component projection. However,
in the lower plot of Fig. 7, correlated anomalies and some of
the uncorrelated anomalies are captured in the first 4 principal
components projection. The Q-statistics (δ2) are also shown in
these plots. From the lower plot, we found Q-statistic (δ2) is
sensitive to the detected correlated anomalies but not the uncor-
related anomalies. Based on these characteristics of correlated
and uncorrelated anomalies in the normal subspace, and the
drawbacks of Q-statistic, we apply the APD scheme to detect
anomalies.

The link measurements y’s projection onto normal subspace
in Eqn. (4) can be written as:

SPE ≡ ‖yno‖2 = ‖PPT y‖2, P = [v1, v2, v3, . . . , vk] (5)

In APD [9], we use μ ± s ∗ σ as a threshold to define the norm
of network health, where μ denotes the mean of measurements
samples, σ is standard deviation of the measurements samples,
and sensitivity s specifies the magnitude of the plateau change
that may result when an anomaly event on a network path is to
be triggered. Using this APD scheme threshold definition, we
may consider the network measurements to be normal if,

μ − s ∗ σ ≤ SPE ≤ μ + s ∗ σ (6)

Now if we combine Eqn. (6) with Q-statistic, we formal-
ize conditions for correlated and uncorrelated anomalies.
We say correlated anomalies have occurred in the network
measurements if,

{
SPE > μ + s ∗ σ and SPE > δ2

δ2 < SPE < μ − s ∗ σ
(7)

And similarly, we conclude that uncorrelated anomalies have
occurred in the network measurements if,

{
SPE < μ + s ∗ σ and SPE < δ2

δ2 > SPE > μ − s ∗ σ
(8)

With the correlated and uncorrelated anomaly detection con-
ditions formalized, we analyze the accuracy of our proposed
anomaly detection scheme in Section VI.
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V. DATA SANITY CHECKING

The efficacy of our proposed anomaly detection scheme
relies heavily on the quality of the collected measurement sam-
ples. However, due to mis-calibration of measurement probes
and potentially improper sampling (from the perspective of
a monitoring objective such as rapid and accurate anomaly
detection or accurate network weather forecasting [38]) in
perfSONAR, the samples collected from multiple domains’
measurement archives are not always worthy of analysis. In this
section, we propose a two-pronged approach to sanitize perf-
SONAR measurement data: a reputation analysis scheme for
collected samples, and a filter framework to intelligently prune
the potentially misleading samples.

A. Reputation Analysis

In order to ascertain what features in a sample set of data
qualify as ‘good’, we collected a considerable amount of perf-
SONAR one-way delay traces for different paths and different
time periods. In any random collection that are publicly acces-
sible, we observed some measurements exhibit non-periodic
sampling pattern, i.e., these samples are either too dense or
too sparse, and some are invalid due to faulty clock syn-
chronization between measurement servers or data corruption
(negative one-way delay values). Such improper sampling ulti-
mately results in erroneous detections and consequently useless
diagnosis/notifications (i.e., increased false alarms) using our
proposed anomaly detection scheme [9].

Therefore, in the context of detecting and diagnosing poten-
tial correlated anomaly events within perfSONAR one-way
delay traces, it is of paramount importance that the sample
data has desired nature expected by the monitoring objective
in terms of 2 aspects: Sampling Pattern and Data Validity.

To identify potentially misleading features of measured data,
we propose a reputation-based data sanity checking scheme
which analyzes the measurement samples for sampling pattern,
and collected sample validity. This scheme involves reputation
score evaluation for each measurement path, and “certainty”
quantification of the entire measurement dataset through a prop-
agation function as shown in Fig. 8. The certainty of detection
strengthens the conclusions drawn about the nature and location
of possible correlated anomaly events output by our anomaly
detection scheme.

1) Effect of Sampling Pattern: Periodic, random, stratified
random, and adaptive sampling are the most common sampling
patterns in network performance measurements [38] to satisfy
various monitoring objectives. Our APD algorithm is a real-
time detector based on the time series’ measurement data to
detect correlated anomaly events. Thus, our algorithm requires
the measurement data should be continuous and periodic in
terms of the sampling time-intervals [39]. Recall from Section I
that highly dense/sparse or irregular (i.e., long data collection
gaps) can result in missed anomaly events and exponential
anomaly detection time [9].

In order to conduct a deeper investigation on the sampling
patterns of perfSONAR data, we collect perfSONAR one-way
delay measurement data from different DOE lab and ESnet sites

Fig. 8. Reputation-based scheme to evaluate the certainty of a correlated
anomaly event detected by PCA-APD-Q-statistic.

Fig. 9. Measurement sampling time-interval histograms for one-way delay
perfSONAR traces.

for different time periods. Figs. 9(a) and 9(b) show one such
exemplar sampling time interval histogram for one-way delay
measurements from DOE lab site FNAL to ESnet POP site
WASH. From the figure, it is evident that the majority of sam-
pling time-intervals are gathered in the one zone (marked by red
curve) which suggest that the majority exhibits expected char-
acteristic in terms of sampling pattern (i.e., good quality data)
with outliers (marked by a red box) being abnormal. Similar
characteristics were observed for other DOE lab and ESnet sites
for different time periods as shown in Figs. 9(c) and 9(d). Such
a pattern signifies that if a perfSONAR domain is in adequately
calibrated, all the time intervals should exhibit the majority
property.

In order to isolate the ‘good’ samples from the ‘not-so-good’
ones, we use the K-Means Clustering algorithm to partition the
sampling time-interval majority and minority clusters. Fig. 10
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Fig. 10. K-Means Clustering to partition sampling time-intervals for separating
major and minority clusters in measurement samples.

shows the use of K-Means Clustering algorithm to partition
one month duration of one-way delay measurements for FNAL
↔WASH.

2) Effect of Data Validity: Measurement data in a few
instances becomes invalid because of faulty clock synchroniza-
tion and/or data corruption. For example, clock synchronization
problem between measurement servers will cause the one-way
delay values of OWAMP measurements to be negative; whereas
data corruption will cause the value of delay to be ‘NaN’. As
discussed earlier, incorporating such invalid data for anomaly
detection analysis can lead to erroneous notifications. For a
measurement data to be valid, the value of delay should be
larger or equal than zero.

3) Reputation and Certainty Quantification: With sam-
pling pattern and data validity being the two most important
factors in deciding the quality of perfSONAR one-way delay
data, we propose the reputation of any path i to be defined as:

ri = 1 − Ni − nmajori t y
i

Ni
− Ni − nvalid

i

Ni

=
Ni −

(
Ni − nmajori t y

i

)
− (

Ni − nvalid
i

)
Ni

(9)

where Ni denotes the number of measurement samples in path
i , nvalid

i denotes the number of valid data samples in path i , and

nmajori t y
i denotes the number of samples in the majority zone

of path i .
As the reputation score is specific to one measurement path,

we still require a mean to translate the reputations of each path
(ri∀i ∈ N ) into a reputation score of the entire measurement
data set. This measurement reputation score quantifies the cer-
tainty of the detection, which inherently guides a network oper-
ator to assess the true severity of the detected anomaly event.
Although the NIST guidelines on measurement uncertainty
quantification are not applicable for our measurement data rep-
utation analysis, we use the NIST guidelines for measurement
uncertainty propagation [40] in order to quantify the certainty of
detection (Cdetection) from measurement path reputation scores.
As the measurement of different source-destination pairs are
uncorrelated, i.e., there are M mutually exclusive measure-

ment observations, the corresponding certainty of detection is
given by:

Cdetection =
M∑

i=1

r2
i (10)

where M is the total number of measurement paths. The above
equation ensures positive and negative certainty of detection;
thus clearly distinguishing the High and Low certainty values.
Also, Cdetection monotonically increases for increasing number
of paths with higher reputation scores and vice versa.

B. Filter Framework

Unlike correlated anomaly events, uncorrelated events being
manifestations of network related faults at an external domain
are harder to localize in the absence of complete network topol-
ogy information. In order to investigate root-cause locations
of such uncorrelated anomaly events without topology infor-
mation, we propose a novel “Filter Framework” to which we
pass the multi-path time-series measurement data through a
series of filters. A collection of temporal and spatial filters
are applied on the time-series data depending on the relative
certainty of uncorrelated anomaly detection and a recursive
PCA-APD-Q-statistic analysis is applied on the filter output.

1) Destination to Source Conversion for High Certainty
Uncorrelated Anomaly Events: When uncorrelated anomaly
events are detected with high certainty, we apply temporal fil-
ters on the time-series data to find the paths with uncorrelated
anomaly event timestamp. The temporal filters consists of two
parts: filtration and measurements transformation. First, we
transform all the time-series measurements into a matrix whose
columns list the measurements information such as timestamp,
measurement value, and detection results. Each measurement
path is transformed into a matrix resulting multi-path measure-
ments generating matrices. Next, linear search is performed on
each matrix using the timestamp as the index to select the row
having an anomaly event around the same time window. The
output of the filters are the individual paths suspected to be the
responsible uncorrelated event path.

Upon filtering the paths, a new set of measurement data are
collected for the same time period as the original, with the des-
tinations of each path now being the new sources. If correlated
anomaly events are detected with high certainty upon analy-
sis of the new samples using our scheme, we can localize the
original uncorrelated anomaly events at the respective destina-
tion. Otherwise, the original uncorrelated anomaly events were
caused due to some abnormal network behavior at one or many
points along the paths other than the sources and destinations.

2) Pruning Misleading Data for Low Certainty
Uncorrelated Anomaly Events: If uncorrelated anomaly
events are detected with low certainty, we argue that the
outcome of the analysis can be dubious due to potentially
untrustworthy (low reputation) samples and the very existence
of uncorrelated anomaly events maybe in question. Thus, in
such cases, we apply spatial filters to detect and intelligently
prune potentially misleading samples, and re-analyze the new
trimmed sample set for anomaly events.
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Fig. 11. One-way delay measurement sample reputation of HOUS and FNAL
to other sites showing normal distribution.

The spatial filtration and the subsequent pruning are based
on the reputation analysis of measurement data discussed in
Section V-A. In order to ascertain what reputation is below-par
and whether reputation is source-specific, we collect perf-
SONAR measurement archives from various DOE sites (e.g.,
FNAL, KANS, HOUS) for different time periods to analyze
their historic distribution pattern. Jarque-Bera test [41] on their
reputation distribution reveals that for every DOE source site,
the measurements’ reputation unanimously follows normal dis-
tribution. In Fig. 11, we show two exemplar measurement data
reputation histograms of ESnet sites HOUS and FNAL to other
sites for different time periods following a normal distribution.

Pruning misleading data can be tricky as single-dimension
reputation-centric pruning may lead to excessive thinning of
measurement samples, i.e., we are left with too few sam-
ples to analyze effectively. Thus, we take a multi-dimensional
approach of pruning based on both reputation and sample pop-
ulation. Depending on the size of the population we might want
to keep at least K % of the entire sample population; if the pop-
ulation is big, value of K can be smaller and vice versa. As any
sample population follows normal distribution (N (μ, δ2) with
μ being the mean and δ being the standard deviation), we can
calculate the baseline reputation x for keeping K % of the entire
sample population with the relation P(X ≥ x) = K/100 and Z
score formula Z = x−μ,

δ
. Thus, any sample with reputation less

than baseline x is pruned and the new sample set is re-analyzed
for anomaly events. For example, in case of a relatively low
number of total available samples for detection and diagnosis,
the network operator may decide to keep at least 80% (K = 80)
of the entire sample population, even if some samples are not
good enough. The reasoning might be that for very small sam-
ple size, it is more prudent to prune a few worst samples rather
than ending up with very few samples for actual detection. In
such a case, the baseline reputation x is calculated from normal
distribution curve with the relation P(X ≥ x) = 0.8.

In another scenario with a very high number of samples, the
network operator can be more ruthless about the quality of the
collected samples and may decide to keep only the best 30%

Fig. 12. Narada Metrics temporally correlated anomaly event notification.

Fig. 13. Narada Metrics Temporal Filter implementation.

(K = 30) of the entire sample population for effective detec-
tion and diagnosis. In such a case, the baseline reputation x can
be similarly calculated from normal distribution curve with the
relation P(X ≥ x) = 0.3.

3) Implementation of Our Proposed Scheme: We demon-
strate the implementation of the proposed scheme in our Narada
Metrics [13] framework for actual perfSONAR one-way delay
measurements. Narada Metrics features perfSONAR extensions
that can analyze network performance via monitoring-objective
directed sampling, and generates performance trend reports and
notifies anomaly events to communities subscribed to mea-
surement archives in perfSONAR. Before this work, Narada
Metrics used just the APD scheme for path-level detection of
uncorrelated anomaly events amongst collected measurements
over a specified user time range. We extend the Narada Metrics
path-level analysis in this work to a network-wide level by
adding PCA and temporal/spatial filters. Fig. 12 shows Narada
Metrics performance plot of anomaly events with temporal cor-
relation between two traces of one-way delay measurements.
For each trace, we apply our APD scheme to detect anomaly
events, which are shown with annotations for network operators
to perform further drill-down analysis.

Fig. 13 shows how the paths responsible for uncorrelated
anomaly events are filtered using the PCA anomaly event
timestamp. As shown in “Measurements Data Description”
of Fig. 13, we collect 5 perfSONAR one-way delay mea-
surements traces and upon PCA-APD-Q-statistic analysis, the
uncorrelated anomaly event timestamps are calculated as 2015-
04-21T18:40:00+00:00 and 2015-04-21T15:20:00+00:00.The
temporal filtration function uses these timestamps as inputs
to filter the traces responsible for the anomaly events as the
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Fig. 14. Narada Metrics Spatial Filter implementation.

“Filtration Results”. We implement spatial filters in our Narada
Metrics framework as shown in the Fig. 14. For this feature, we
collected thousands of measurement traces as training dataset
to generate the Normal distribution of measurement data rep-
utations. As shown in the illustration, a network operator can
prune below-par samples in terms of measurement paths by
making sure that at least a desired percentage (e.g., 80%) of
the entire dataset is retained. The algorithm computes the repu-
tation baseline according to the Normal distribution as shown in
“Reputation baseline”. The output of the filtration processes are
the paths to be eliminated as shown in the “Filtration Results”
window.

VI. EVALUATION AND RESULTS

A. Anomaly Detection and Isolation With Synthetic Data

To demonstrate the PCA-APD-Q-statistic scheme’s accuracy
of detection and isolation, we plot the anomaly detection per-
formance of the existing PCA-APD [7], PCA-SPD [36], and
PCA-Q-statistic [11], [12] (without APD) schemes with differ-
ent datasets and different number of correlated and uncorrelated
anomaly events. Recall that the Q-statistic is a statistic test to
detect threshold-crossing samples. To adapt the Q-statistic into
a plateau detector, we look for 7 (same trigger count in APD and
SPD) consecutive threshold-crossing to classify it as a plateau
event.

1) Evaluation Methodology: For this, we generate syn-
thetic trace data described earlier in Section IV-B. We randomly
generate the one week dataset, and inject different number of
correlated and uncorrelated anomaly events into the dataset to
compare the detection accuracy. The synthetic data is carefully
generated to closely mimic the actual perfSONAR one-way
delay measurement traces, as shown in the Fig. 15. In order
to inject correlated anomaly events, we first generate 6 traces
and then inject anomaly events in those traces at the same
time. We also inject events at random times as uncorrelated
anomaly events. The percentage of anomaly events in each trace
(ρanomaly) vary from 0.1%–1% of the total sample population
for each trace. The magnitudes of anomaly events (rmagnitude)
vary from 10%–60% over normal measurements with higher
magnitudes causing sharper spikes.

2) Evaluation Metrics: We evaluate the anomaly event
detection accuracy of our PCA-APD scheme and compare
it with PCA-SPD and PCA-Q-statistic schemes using three
well known detection evaluation metrics, viz., Accuracy, False

Fig. 15. Data sample comparison between real data and synthetic data.

Fig. 16. Detection accuracy comparison.

Positive Rate (FPR), and False Negative Rate (FNR). These
metrics are defined as follows:

Accuracy =
∑

True Positives + ∑
True Negatives∑

Anomaly Events

FPR =
∑

False Positives∑
Anomaly Events

FNR =
∑

False Negatives∑
Anomaly Events

3) Anomaly Detection Evaluation Results: In Figs. 16(a)
and 16(b), we compare the accuracy of the schemes. In
Fig. 16(a), we show the nature of detection accuracy with
rmagnitude. We observe, APD and SPD with high sensitivity (s =
5), exhibit 100% detection accuracy. However, a less sensi-
tive SPD (s = 1) suffers from poor accuracy due to erroneous
detection of especially uncorrelated anomaly events that are
difficult to detect. In Fig. 16(b), we compare the scheme’s accu-
racy against ρanomaly. We observe that APD performs robustly
against high-density of anomaly events in the samples. Both
SPD and Q-statistic suffer from erroneous detection of uncor-
related anomaly events, whose number increases with higher
ρanomaly.

In Fig. 17(a), we compare the scheme’s performances in
terms of FPR against ρanomaly. We observe that the APD and
Q-statistic do not react to anomaly density, however the per-
formance of SPD (s = 2) rapidly deteriorates due to static
threshold settings, thus causing more false alarms of anomaly
events. In the Fig. 17(b), we can see that SPD performs the
best for the default over-sensitivity of detection. The Q-statistic
misses all the uncorrelated anomaly events and APD exhibits
few false alarms at a higher anomaly density.

A meta-perspective of the scheme’s relative perfor-
mances are shown in Fig. 18 through a Receiver Operating
Characteristic (ROC) plot. The ROC plot indicates the True
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Fig. 17. False alarm rate comparison.

Fig. 18. Receiver operating characteristic comparison.

Positive Rate (TPR) performance of a scheme against FPR
with performance curve above the 45 ◦ denoting better perfor-
mance. We see that our PCA-APD scheme clearly outperforms
the other two schemes with a higher accuracy rate than false
alarm rate indicating that the PCA-APD is the best among the
contending three schemes of anomaly detection.

4) Anomaly Isolation Evaluation Results: Next, we ana-
lyze the performance of our proposed PCA-APD-Q-statistic in
isolating correlated and uncorrelated anomaly events. In the
Section IV-B, we explained how Q-statistic is a threshold to
discern the correlated and uncorrelated anomaly events, where
the anomaly events above the threshold are correlated anomaly
events, and below are uncorrelated. However, we observed that
the size of the measurement dataset plays an important role in
the relative performance of Q-statistic.

In Fig. 19(a), we show how the Q-statistic successfully iso-
lates correlated and uncorrelated anomaly events in a one week
synthetic data set with 5 correlated and 2 uncorrelated anomaly
events injected. However, the same 7 anomalies for a two weeks
long dataset are not successfully distinguished with both the
uncorrelated anomaly events being detected wrongly as corre-
lated, as shown in the Fig. 19(b). The performance improves
again upon injecting more correlated anomaly events in the
dataset, with 100% accuracy reached when 3 more correlated
anomaly events are injected (i.e., total 8 correlated and 2 uncor-
related), as shown in the Fig. 19(c). Similar characteristics are
observed in month long data and higher. The reason behind such
characteristics is the dynamic trigger demotion of Q-statistic
threshold by predominant uncorrelated anomaly events in the
dataset since the magnitude of the uncorrelated anomaly events
are much smaller in the data projection. With more correlated
anomaly events in the dataset, such effects are negated and the
Q-statistic performs better.

In order to gauge the accuracy of isolation in an unknown
data set, the proximity of a correlated anomaly event in higher

principal components to the Q-statistic threshold may prove to
be more useful. To this end, we conducted rigorous experiments
with synthetic datasets of different sizes, and concluded that
any correlated anomaly detected within the range of 0 – 2×105

from the Q-statistic threshold in second principal component
data projection, called the ‘Grey zone’ is inconclusive and may
need further investigation with artificially injected correlated
anomaly events in the dataset.

5) Detection and Isolation Evaluation Summary: The
detection accuracy evaluation showcases the improved accu-
racy of using our proposed PCA-APD-Q-statistics anomaly
event detection technique over existing schemes in the absence
of complete network topology information. Moreover, our pro-
posed scheme also result in lower false alarms rates over
existing schemes for different densities of anomaly events in
the measurement traces. In anomaly isolation evaluation, we
presented only a small subset of total number of experiments
performed with synthetic data. The results overwhelmingly
demonstrate how our proposed scheme successfully isolates
correlated events from uncorrelated events. The results also
help us generate bounds on the relative ratio of correlated and
uncorrelated anomaly events for pertinent isolation.

B. Case Studies With Actual perfSONAR Data

In this section, we validate the use of our proposed anomaly
detection and certainty diagnosis scheme to analyze correlated
and uncorrelated anomaly events at the network-wide level
using source-site information within actual perfSONAR traces.
The datasets in the following case studies consist of plateau
anomalies such as persistent increase and other anomaly events
such as intermittent bursts and dips. We consciously ignore
intermittent burst and dip events because these types of anoma-
lies are generally caused by user behavior, and are not of
interest to network operators for routine monitoring and bot-
tleneck troubleshooting. All of the actual perfSONAR traces
correspond to one-way delay measurements collected between
DOE lab sites such as FNAL (Fermi National Accelerator
Laboratory), SLAC (SLAC National Accelerator Laboratory),
ORNL (Oak Ridge National Laboratory), and ESnet 100G hubs
ATLA (Atlanta), STAR (StarLight), and SUNN (Sunnyvale).

We perform a select set of case studies using both short-
term and long-term traces to demonstrate different functional-
ities of our proposed scheme, such as: (i) anomaly detection,
(ii) anomaly correlation identification, (iii) anomaly detec-
tion certainty evaluation, (iv) diagnosing potential uncorrelated
anomaly location through destination to source conversion,
and (v) effect of pruning misleading samples to increase
detection certainty. The purpose of collecting samples for
different time periods and time lengths below is to demon-
strate the effectiveness of our scheme for both short-term and
long-term measurement objectives using different sample size
populations.

1) Case Study I: Location Isolation With One Month Data:
As discussed in Section IV, the PCA-APD-Q-statistic scheme
can accurately detect correlated and uncorrelated anomaly
events with low false alarm rates, and PCA-with-Q-statistic
scheme can completely accurately detect correlated anomaly



ZHANG et al.: NETWORK-WIDE ANOMALY EVENT DETECTION AND DIAGNOSIS 677

Fig. 19. Accuracy of Q-statistic to successfully isolate correlated and uncorrelated anomaly events for different dataset sizes.

Fig. 20. Case Study I and II: Location Isolation and Certainty Diagnosis.

TABLE I
CASE STUDY I PERFSONAR TRACES DESCRIPTION

events (however, it misses all the uncorrelated anomaly events),
we leverage the Q-statistic within our PCA-APD scheme as
a sure way to accurately identify all the correlated anomaly
events. To illustrate with further evidence, we used the actual
perfSONAR one-month long traces from ESnet site ATLA to
6 other DOE lab sites as shown in Table I. Fig. 20(a) shows
one anomaly that is detected in the actual perfSONAR traces
by the PCA-APD-Q-statistic scheme using the first principal
component. If we assume all correlated anomalies are captured
in the first principal component, and the uncorrelated anoma-
lies are captured in the rest of principal components, we may
mis-identify correlated anomaly events in certain situations.
Consequently, as shown in Fig. 20(b), our scheme identifies
the anomaly above the Q-statistic as a correlated anomaly event
with a high certainty of detection 0.9979 showing high confi-
dence on the collected samples. From the above analysis, we
can conclude a correlated anomaly occurred in a local domain
(i.e., within ATLA) at 22:29:11- 22:38:34 time period. In order

TABLE II
CASE STUDY II PERFSONAR TRACES DESCRIPTION

to validate this detection, we checked each of the traces using
just the APD scheme to detect anomaly events in each trace.
We found six traces to have the anomaly events at the same
time windows.

The Case Study I results show how a network operator can
use the PCA-APD-Q-statistic scheme to detect and analyze the
correlation among anomaly events without having complete
topology information.

2) Case Study II: Certainty Diagnosis With One Month
Data: In order to ensure that the accuracy of location isolation
using the proposed scheme also holds for other paths, we col-
lect one month measurements from ESnet site STAR to 8 DOE
lab sites as shown in Table II. Upon PCA-APD-Q-statistic anal-
ysis and data sanity checking, we detected 3 correlated anomaly
events (as shown in the Fig. 19(c)), however with low certainty
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Fig. 21. Case Study III: Destination to Source Conversion.

of detection, 0.4669. As we already established that source-
side faults lead to correlation, local domain (i.e., STAR) is most
likely to be responsible for the anomaly events, albeit with low
detection certainty.

Thus, Case Study II results show how a network oper-
ator can handle scenarios where the measurement samples
with misleading features can lead to low certainty of detec-
tion. For e.g., given the Case Study II certainty of detection
being low, the network operator can prioritize fixing Case
Study I issues over Case Study II issues when troubleshooting
bottlenecks.

3) Case Study III: Root Cause Diagnosis of Low Certainty
Uncorrelated Anomaly Event With One Month Data: We
already discussed that detected uncorrelated anomaly events
in most cases are a result of faults outside the local domain.
However, in a measurement setup with multiple paths with high
topological correlation (i.e., common hops), such uncorrelated
anomaly events on individual paths at different timestamps
can be isolated to be manifestations of faults at a destina-
tion domain. In the absence of network topology information,
destination-to-source transformation of the path having uncor-
related anomaly event and subsequent measurement data col-
lection for the same time period can lead to accurate location
diagnosis. To test this rationale, we collect month-long mea-
surements from DOE lab site FNAL to 16 other DOE lab
and ESnet sites (as shown Table III) with high topological
correlation among the paths. When we applied our PCA-APD-
Q-statistic anomaly detection scheme and sanity checking, we
detected an uncorrelated anomaly event with high certainty as
shown in the Fig. 21(a). Upon applying filters, we found that the
anomaly occurred at around 2014-10-29 05:46:53 on the path
FNAL to SLAC in Table III.

Thus, with the expectation to find a correlated anomaly event
with high certainty around the same time, we collected perf-
SONAR data with SLAC as source to 6 other DOE sites as
shown in Table IV. Upon analysis, we detected a correlated
anomaly event with high certainty as shown in the Fig. 21(b)
occurring at around 2014-10-29 05:40:24, thus validating our
original claim of detecting correlation. The Case Study III
results help a network operator to successfully use our pro-
posed temporal filter (for destination to source conversion) in
diagnosing and isolating uncorrelated anomaly events during
root-cause analysis, which otherwise would be challenging in
practice without complete topology information.

TABLE III
CASE STUDY III PERFSONAR TRACES DESCRIPTION WITH FNAL

AS SOURCE

TABLE IV
CASE STUDY III PERFSONAR TRACES DESCRIPTION WITH SLAC

AS SOURCE

4) Case Study IV: Pruning Misleading Measurement
Samples With One Week Data: To validate the claim of prun-
ing misleading data can improve detection accuracy, we col-
lected short term (one week) perfSONAR samples from ORNL
to 6 other DOE sites as shown in Table V. The PCA-APD anal-
ysis fails to find any anomaly events as shown in the Fig. 22(a).
However, the certainty of detection was 0.83 which was less
than the historical average of ORNL specific data.

To avoid excessive thinning of measurement samples before
pruning the ill-reputed samples, we analyzed the historical
ORNL measurements data and estimated with Z score formula
(discussed in Section V-B2) to prune samples below 0.8798
(minimum reputation of 80% sample population). Upon filter-
ing, we eliminated the trace from ORNL to SNLA (shown in
red) with reputation 0.07 that was impacting the detection out-
come and executed recursive PCA-APD-Q-statistic on the new
sample set. Upon analysis, we found an uncorrelated anomaly
event (as shown in Fig. 22(b)), undetected previously. We apply



ZHANG et al.: NETWORK-WIDE ANOMALY EVENT DETECTION AND DIAGNOSIS 679

Fig. 22. Case Study IV: Pruning Misleading Measurement Samples.

TABLE V
CASE STUDY IV PERFSONAR TRACES DESCRIPTION WITH ORNL

AS SOURCE

TABLE VI
CASE STUDY IV PERFSONAR TRACES DESCRIPTION WITH SUNN

AS SOURCE

similar destination-to-source conversion to that of Case Study
III to collect new measurement data (as shown in Table VI)
for the path responsible for the uncorrelated anomaly event
(SUNN). As expected, our analysis proved the existence of
a correlated anomaly event with high certainty (as shown in
Fig. 22(c)) around the same time period. Through Case Study
IV, we established that pruning misleading data using our pro-
posed spatial filter can help a network operator to obtain higher
detection certainty for further analysis on new trimmed sample
sets. This in turn can reveal to new and more interesting features
corresponding to anomaly events.

VII. CONCLUSION

In this paper, we presented a novel PCA-based network-wide
correlated anomaly detection scheme that: (i) uses principal
component analysis to capture the maximum variance in a given

multiple path measurement time-series, (ii) applies adaptive
plateau detector (APD) to detect anomaly events with fused
data transformation by PCA, (iii) leverages Q-statistic event
correlation analysis in order to accurately filter out correlated
and uncorrelated anomaly events, and (iv) quantifies certainty
of such detection using an adaptive reputation-based data san-
ity checking that accounts for factors such as sampling pattern,
sampling frequency, and sample validity.

With the strength of our prior work in developing APD’s
accurate uncorrelated anomaly detection algorithm, our pro-
posed PCA-APD-Q-statistic scheme in this paper has the
unique ability to detect both correlated and uncorrelated anoma-
lies with high accuracy and low false alarms, in a timely
manner. With event correlation analysis, our scheme is suitable
for source-side anomaly localization to help network operators
to diagnose the root-cause of bottlenecks, even when network
topology information is not completely available. The proposed
scheme is able to filter our potential misleading data to asso-
ciate a level of certainty for each such detection and diagnosis
claims.

We implemented our novel scheme in the form of perf-
SONAR extensions and performed extensive validation exper-
iments with both synthetic trace data and actual perfSONAR
trace data collected from DOE lab and ESnet hub sites.
Specifically, we presented four case studies that validate the
utility of our PCA-APD-Q-statistic and data sanity checking
schemes. Our work in this paper can help network operators
using perfSONAR dashboard, and scientists of data-intensive
applications to isolate and diagnose bottlenecks with a degree
of certainty. Further, it can foster effective troubleshooting in
the context of root-cause analysis of correlated network-wide
anomaly events from a meta-perspective.
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