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1 Probabilistic Latent Semantic Analysis (Hofmann, 1999)

M
N

Figure 1: Graphical model representation of PLSA

As shown in Figure 1, the generative process in PLSA is as follows:

a) select a document di with probability P(di)

b) pick a latent class zk with probability P(zk|di))

c) generate a word wj with probability P(wj|zk))

Then, the joint probability of PLSA model results in the expression,

P(di, wj) = P(di)P(wj|di), P(wj|di) =
K

∑
k=1

P(wj|zk)P(zk|di) (1)

The modeling goal is to identify conditional probability mass functions P(wj|zk). For-
mally, we can use a maximum likelihood formulation of the learning problem,

L =
N

∑
i=1

M

∑
j=1

n(di, wj) log P(di, wj) (2)

Then, pluging Eq. 9 into Eq. 3, we got

L =
N

∑
i=1

M

∑
j=1

n(di, wj) log
[

P(di)
K

∑
k=1

P(wj|zk)P(zk|di)
]

(3)

=
N

∑
i=1

n(di)log P(di) +
N

∑
i=1

M

∑
j=1

n(di, wj)log
[ K

∑
k=1

P(wj|zk)P(zk|di)
]

Where n(di) denotes length of doc di, and n(di, wj) denotes the number of times the term
wj occurred in document di.

1.1 Inference with the EM Algorithm

Basically, to derive EM algorithm, we need to: a) define Q(θ, θ(i)) function; b) In E-step,
compute Q(θ, θ(i)) function based on current parameter θ(i); c) In M-step, re-estimate
parameters θ(i+1) which maximizes Q(θ, θ(i)),

θ(i+1) = arg max
θ

(θ, θ(i)) (4)
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1.1.1 Define Q function

The Q function is defined as the expectation of the complete-data log likelihood function
log P(Y, Z|θ) with respect of the posterior distribution of unobserved latent variables
P(Z|Y, θ(i)), which is,

Q(θ, θ(i)) = EZ[log P(Y, Z|θ)|Y, θ(i)] (5)

Hence, in PLSA model, the complete-data log likelihood function will be Eq. 3. Be-
cause, in Eq. 3 the first term ∑N

i=1 n(di)log P(di) does not depends on latent variables z,
we can ignore it. Then, the Q function can be defined as,

Q(θ, θ(i)) =
N

∑
i=1

M

∑
j=1

n(di, wj)
K

∑
k=1

P(zk|di, wj)log
[

P(wj|zk)P(zk|di)
]

(6)

1.1.2 E-Step

To compute Q(θ, θ(i)), we just need to compute P(zk|di, wj), which can be computed
using Bayes rule,

P(zk|di, wj) =
P(wj|zk)P(zk|di)

P(di, wj)
(7)

=
P(wj|zk)P(zk|di)

∑k P(wj|zk)P(zk|di)
(8)

1.1.3 M-Step

In M-Step, we’re going to find parameter θ(i+1) that can maximize function Q. Because,

M

∑
j=1

P(wj|zk) = 1,
K

∑
k=1

P(zk|di) = 1 (9)

So, the function H with Lagrange multipliers τk and ρi is,

H = Q(θ, θ(i)) +
K

∑
k=1

τk(1−
M

∑
j=1

P(wj|zk)) +
N

∑
i=1

ρi(1−
K

∑
k=1

P(zk|di)) (10)

Then, first compute partial derivative of the function H with respect to the P(wj|zk) and
solve it when derivative is equal to zero.

N

∑
i=1

n(di, wj)P(zk|di, wj)
1

P(wj|zk)
− τk = 0 (11)

or,

N

∑
i=1

n(di, wj)P(zk|di, wj)− τkP(wj|zk) = 0 (12)
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the τk can be solved when combining 1 6 j 6 M,

τk =
N

∑
i=1

M

∑
j=1

n(di, wj)P(zk|di, wj) (13)

So, the P(wj|zk) is

P(wj|zk) =
∑N

i=1 n(di, wj)P(zk|di, wj)

∑N
i=1 ∑M

j=1 n(di, wj)P(zk|di, wj)
(14)

Second, compute partial derivative of the function H with respect to the P(zk|di) and
solve it when derivative is equal to zero.

M

∑
j=1

n(di, wj)P(zk|di, wj)− ρiP(zk|di) = 0 (15)

And the ρi can be solved when combining 1 6 k 6 K, and ∑K
k=1 P(zk|di, wj) = 1,

ρi =
M

∑
j=1

n(di, wj) (16)

So, the P(zk|di) is

P(zk|di) =
∑M

j=1 n(di, wj)P(zk|di, wj)

∑M
j=1 n(di, wj)

(17)
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2 Finding scientific topics (Griffiths and Steyvers, 2004)

2.1 Derive the Eq.1 P(w|z)
In paper, author use vector representation for z in Eq.1. For simplicity, I just use single
topic assignment zi instead of vector, and φ is multinomial distributions over the W
words for topic assignment zi,

P(w|zi) =
∫

P(w,φ|zi) dφ (18)

=
∫

P(w|z,φ)P(φ) dφ

=
∫ Γ(∑W

i=1 β)

∏W
i=1 Γ(β)

W

∏
i=1

φ
β−1
i ×

W

∏
i=1

φ
n(w)

zi
i dφ

=
∫ Γ(∑W

i=1 β)

∏W
i=1 Γ(β)

W

∏
i=1

φ
n(w)

zi +β−1
i dφ

=
Γ(∑W

i=1 β)

∏W
i=1 Γ(β)

∫ W

∏
i=1

φ
n(w)

zi +β−1
i dφ

=
Γ(Wβ)

Γ(β)W

∫ W

∏
i=1

φ
n(w)

zi +β−1
i dφ

in which n(w)
zi is the number of times word w has been assigned to topic zi. Because,

∫ W

∏
i=1

φ
n(w)

zi +β−1
i dφ =

∏W
i=1 Γ(n(w)

zi + β)

Γ(∑W
i=1 n(w)

zi + Wβ)
(19)

=
∏W

i=1 Γ(n(w)
zi + β)

Γ(n(�)
zi + Wβ)

Then, the Equation 18 can be written as,

P(w|zi) =
Γ(Wβ)

Γ(β)W
∏W

i=1 Γ(n(w)
zi + β)

Γ(n(�)
zi + Wβ)

(20)

When considering the whole T topic assignment z, we get the same equation as shown
in paper Eq.1.

P(w|z) =
T

∏
j=1

p(w|zj) (21)

=
(Γ(Wβ)

Γ(β)W

)T T

∏
j=1

∏W
i=1 Γ(n(w)

j + β)

Γ(n(�)
j + Wβ)

In order to avoid numerical overflow,
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2.2 Derive the Eq.5 P(zi = j|z−i, w)

Because,

P(z|w) =
P(w, z)

∑z P(w, z)
(22)

Then,

P(zi = j|z−i, w) =
P(w, z)

P(w, z−i)
(23)

=
P(w|z)P(z)

P(w|z−i)P(z−i)

So, we can put Eq.2 and Eq.3 of the original paper into Equation 23, and use Gamma
function property Γ(x + 1) = xΓ(x) by cancellation of terms then,

P(zi = j|z−i, w) =
P(w|z)P(z)

P(w|z−i)P(z−i)
(24)

=

[(
Γ(Wβ)
Γ(β)W

)T
∏T

j=1
∏W

i=1 Γ(n(w)
j +β)

Γ(n(�)
j +Wβ)

]
×
[(

Γ(Tα)
Γ(α)T

)D
∏D

d=1
∏T

j=1 Γ(n(d)
j +α)

Γ(n(d)
� +Tα)

]

[(
Γ(Wβ)
Γ(β)W

)T
∏T

j=1
∏W

i=1 Γ(n(w)
−i,j+β)

Γ(n(�)
−i,j+Wβ)

]
×
[(

Γ(Tα)
Γ(α)T

)D
∏D

d=1
∏T

j=1 Γ(n(d)
−i,j+α)

Γ(n(d)
−i,�+Tα)

]

=
n(wi)
−i,j + β

n(�)
−i,j + Wβ

n(di)
−i,j + α

n(di)
−i,� + Tα

2.3 Model selection for computing P(w|T)
In paper, author approximate P(w|T) by taking the harmonic mean of a set of values of
P(w|z(i), T) when z(i) is sampled from the posterior P(z|w, T), which means,

P(w|T) ≈
{ 1

m

m

∑
i=1

P(w|z(i), T)−1
}−1

(25)

Raftery et al. in papers (Newton and Raftery, 1994; Kass and Raftery, 1995) explain this
idea by using the concept of importance sampling for model section.

In this example, we have several models {Ti : i = 10, 20, ..., 1000}, then Bayesian
inference needs to compute the posterior probabilities given data w,

P(Ti|w) =
P(w|Ti)P(Ti)

∑T
i P(w|Ti)p(Ti)

(26)

And the likelihood function P(w|Ti) is crucial component that needs to integrate out all
topic assignment z then,

P(w|Ti) =
∫

P(w|z, Ti)P(z|Ti) dz (27)
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So, the problem becomes how to approximate P(w|Ti).
Recall the basic Monte Carlo integration is to approximate p(x) =

∫
p(x|θ)p(θ)dθ,

when p(θ) is hard to integrate and the simple Monte Carlo approximation method is

Î =
1
m

m

∑
i=1

p(x|θ(i))) (28)

However, the weakness of this simple method is that the estimation is dominated by a
few large values of the small likelihood.

Another method (called importance sampling) is to generate samples {θ(i) : i =
1, ..., m} from a proposal density function q(θ), and compute importance weight wi =
p(θ)
q(θ) . Then, the approximation is written as,

Î = ∑m
i=1 wi p(x|θ(i))

∑m
i=1 wi

(29)

which is also known as importance sampling without normalization constants. Raftery et
al. mentioned in papers (Newton and Raftery, 1994) that q(θ) can be approximately
drawn from the their posterior density,

q(θ) ≈ p(θ|x) = p(x|θ)p(θ)
p(x)

(30)

Subsistution into Equation 29 yields, an an estimate for p(x),

p(x) ≈ p̂(x) =
{ 1

m

m

∑
i=1

p(x|θ(i))−1
}−1

(31)

In this example, we need to approximate P(w|Ti), and we sample z(i) from posterior
distribution P(w|z, Ti), then we got

P(w|Ti) ≈
{ 1

m

m

∑
i=1

P(w|z(i), Ti)
−1
}−1

(32)
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3 On the importance of initialization and momentum in
deep learning (Sutskever et al., 2013)

In this paper, authors mentioned two momentum-based optimization methods for deep
learning: a). classical momentum (CM) and b). Nesterov’s accelerated gradient (NAG).

3.1 Gradient Descent

The basic gradient descent is defined as,

θt+1 = θt − ε∇ f (θt) (33)

where the θ is learning parameters or weights. and the ε is learning rate.

3.2 Classical Momentum (CM)

The CM method is defined as,

vt+1 = µvt + (1− µ)∇ f (θt) (34)
θt+1 = θt − εvt+1 (35)

where ε is the learning rate, µ ∈ [0, 1] is momentum coefficient. The notations are same
with paper, but the equation is slightly different from the original paper.

3.3 Nesterov’s Accelerated Gradient (NAG)

The NAG method is defined as,

vt+1 = µvt + (1− µ)∇ f (θt + µvt) (36)
θt+1 = θt − εvt+1 (37)
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4 Auto-Encoding Variational Bayes (Kingma and Welling,
2013)

x

z� ✓

N

Figure 1: The type of directed graphical model under consideration. Solid lines denote the generative
model p✓(z)p✓(x|z), dashed lines denote the variational approximation q�(z|x) to the intractable
posterior p✓(z|x). The variational parameters � are learned jointly with the generative model pa-
rameters ✓.

straightforward to extend this scenario to the case where we also perform variational inference on
the global parameters; that algorithm is put in the appendix, but experiments with that case are left to
future work. Note that our method can be applied to online, non-stationary settings, e.g. streaming
data, but here we assume a fixed dataset for simplicity.

2.1 Problem scenario

Let us consider some dataset X = {x(i)}N
i=1 consisting of N i.i.d. samples of some continuous

or discrete variable x. We assume that the data are generated by some random process, involving
an unobserved continuous random variable z. The process consists of two steps: (1) a value z(i)

is generated from some prior distribution p✓⇤(z); (2) a value x(i) is generated from some condi-
tional distribution p✓⇤(x|z). We assume that the prior p✓⇤(z) and likelihood p✓⇤(x|z) come from
parametric families of distributions p✓(z) and p✓(x|z), and that their PDFs are differentiable almost
everywhere w.r.t. both ✓ and z. Unfortunately, a lot of this process is hidden from our view: the true
parameters ✓⇤ as well as the values of the latent variables z(i) are unknown to us.

Very importantly, we do not make the common simplifying assumptions about the marginal or pos-
terior probabilities. Conversely, we are here interested in a general algorithm that even works effi-
ciently in the case of:

1. Intractability: the case where the integral of the marginal likelihood p✓(x) =R
p✓(z)p✓(x|z) dz is intractable (so we cannot evaluate or differentiate the marginal like-

lihood), where the true posterior density p✓(z|x) = p✓(x|z)p✓(z)/p✓(x) is intractable
(so the EM algorithm cannot be used), and where the required integrals for any reason-
able mean-field VB algorithm are also intractable. These intractabilities are quite common
and appear in cases of moderately complicated likelihood functions p✓(x|z), e.g. a neural
network with a nonlinear hidden layer.

2. A large dataset: we have so much data that batch optimization is too costly; we would like
to make parameter updates using small minibatches or even single datapoints. Sampling-
based solutions, e.g. Monte Carlo EM, would in general be too slow, since it involves a
typically expensive sampling loop per datapoint.

We are interested in, and propose a solution to, three related problems in the above scenario:

1. Efficient approximate ML or MAP estimation for the parameters ✓. The parameters can be
of interest themselves, e.g. if we are analyzing some natural process. They also allow us to
mimic the hidden random process and generate artificial data that resembles the real data.

2. Efficient approximate posterior inference of the latent variable z given an observed value x
for a choice of parameters ✓. This is useful for coding or data representation tasks.

3. Efficient approximate marginal inference of the variable x. This allows us to perform all
kinds of inference tasks where a prior over x is required. Common applications in computer
vision include image denoising, inpainting and super-resolution.

2

Figure 2: Variational inference of graphical model

VAE is popular generative model that performs an auto-encoder manner with repa-
rameterization trick.

4.1 The Variational Bound

Considering some dataset X = {x(i)}N
i=1 consisting of N i.i.d. samples of some contin-

uous or discrete variable x. We assume that the data are generated by some random
process, involving an unobserved continuous random variable z. Because, to com-
pute p(x) is intractable, that involves the integral of the marginal distribution p(x) =∫

p(z)p(x|z)dz. Hence, to infer posterior density p(z|x) = p(x|z)p(z)/p(x) is also in-
tractable. So, EM algorithm is intractable.

To solve this problem, authors introduce a recognition model q(z|x) to approximate
true posterior p(z|x) and method to learn the recognition model parameters φ jointly
with the generative model parameters θ. And the important definition of this paper
is that they refer the recognition model qφ(z|x) as a probabilistic encoder, and genera-
tive model, and refer pθ(x|z) as as a probabilistic decoder. The Figure 3 illustrates the
encoder-decoder framework in VAE.

Then, this problem can be treated as optimization problem that is to minimize the
divergence between qφ(z|x) and pθ(z|x), which is DKL(qφ(z|x)||pθ(z|x)). Then,

DKL(qφ(z|x)||pθ(z|x)) (38)

= −∑ qφ(z|x)log
pθ(z|x)
qφ(z|x)

= −∑ qφ(z|x)logpθ(z|x) + ∑ qφ(z|x)logqφ(z|x)

= −∑ qφ(z|x)log
pθ(x, z)
pθ(x)

+ ∑ qφ(z|x)logqφ(z|x)

= −∑ qφ(z|x)logpθ(x, z) + ∑ qφ(z|x)logpθ(x) + ∑ qφ(z|x)logqφ(z|x)
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Figure 3: Encoder-Decoder framework in VAE

= ∑ qφ(z|x)logpθ(x)−∑ qφ(z|x)log
pθ(x, z)
qφ(z|x)

= logpθ(x)−∑ qφ(z|x)log
pθ(x, z)
qφ(z|x)

Hence,

logpθ(x) = DKL(qφ(z|x)||pθ(z|x)) + ∑ qφ(z|x)log
pθ(x, z)
qφ(z|x)

(39)

We define second term in Eq. 39 as variational lower bound L(θ, φ; x). Then,

logpθ(x) = DKL(qφ(z|x)||pθ(z|x)) + L(θ, φ; x) (40)

And,

L(θ, φ; x) = ∑ qφ(z|x)log
pθ(x, z)
qφ(z|x)

(41)

= ∑ qφ(z|x)log
pθ(x|z)pθ(z)

qφ(z|x)

= ∑ qφ(z|x)
[
logpθ(x|z)− log

pθ(z)
qφ(z|x)

]

= ∑ qφ(z|x)logpθ(x|z)−∑ qφ(z|x)log
pθ(z)

qφ(z|x)
= −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)

[
logpθ(x|z)

]

So, to maximize the logpθ(x) is also equal to maximize lower bound L(θ, φ; x).
And, because, DKL(qφ(z|x)||pθ(z)) is hard to compute, we can just maximize the sec-

ond term Eqφ(z|x)
[
logpθ(x|z)

]
to increase lower bound. Authors also mentioned the

navie method Monte Carlo gradient estimator to approximate compute derivative of
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Eqφ(z|x)
[
logpθ(x|z)

]
, which is

∇φEqφ(z|x)[logpθ(x|z)] = ∇φ

∫

z
qφ(z|x)logpθ(x|z)dz (42)

=
∫

z
logpθ(x|z)∇φ

[
qφ(z|x)

]
dz

=
∫

z
logpθ(x|z)qφ(z|x)∇φ

[
logqφ(z|x)

]
dz

= Eqφ(z|x)

[
logpθ(x|z)∇φ

[
logqφ(z|x)

]]

Then, it can approximate this expectation using Monte Carlo integration

∇φEqφ(z)[ f (z)] = Eqφ(z)

[
f (z)∇qφ(z) log qφ(z)

]
' 1

L

L

∑
l=1

f (z)∇qφ(z(l)) log qφ

(
z(l)
)

(43)

Where z(l) ∼ qφ (z|x) and logpθ(x|z) is simplified with with f (z), And this gradient
estimator exhibits exhibits very high variance (Paisley et al., 2012). So, the problem
becomes that can we differentiate through the sampling process?

4.2 The SGVB estimator and AEVB algorithm

In this paper, author approximate posterior qφ (z|x) using reparameterize the random
variable z̃ ∼ qφ (z|x) using a differentiable transformation gφ(ε, x)

z̃ = gφ(ε, x) with ε ∼ p(ε) (44)

Then, use Monte Carlo estimates of expectations of some function f (z) w.r.t. qφ (z|x) as
follows:

Eqφ(z|x(i))[ f (z)] = Ep(ε)

[
f
(

gφ

(
ε, x(i)

))]
' 1

L

L

∑
l=1

f
(

gφ

(
ε(l), x(i)

))
where ε(l) ∼ p(ε)

(45)

Because, from Eq. 41 the L(θ, φ; x) can be written as

L(θ, φ; x) = Eqφ(z|x)
[
− log qφ(z|x) + log pθ(x, z)

]
(46)

Apply Eq. 45 to Eq. 46 for approximating lower bound, yielding our generic Stochastic
Gradient Variational Bayes (SGVB) estimator L̃A

(
θ,φ; x(i)

)
' L

(
θ,φ; x(i)

)

L̃A
(
θ,φ; x(i)

)
=

1
L

L

∑
l=1

[
log pθ

(
x(i), z(i,l)

)
− log qφ

(
z(i,l)|x(i)

) ]
(47)

where z(i,l) = gφ

(
ε(i,l), x(i)

)
and ε(l) ∼ p(ε)
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And author also provide another version of SGVB estimator that considers KL diver-
gence if it can be computed using Eq. 41 as follows:

L̃B
(
θ,φ; x(i)

)
= −DKL

(
qφ
(

z|x(i)
)
‖pθ(z)

)
+

1
L

L

∑
l=1

(
log pθ

(
x(i)|z(i,l)

))
(48)

where z(i,l) = gφ

(
ε(i,l), x(i)

)
and ε(l) ∼ p(ε)

And first term can be treated as a regularizer. Then given dataset X with N datapoints,
we can construct an estimator of SGVB, as follows:

L(θ,φ; X) ' L̃M
(
θ,φ; XM

)
=

N
M

M

∑
i=1
L̃
(
θ,φ; x(i)

)
(49)

Therefore, the auto-encoder procedure will be

a) Encoder: choose function gφ(.) that maps datapoint x(i) and a ranodom noise

ε(l) to a sample from the approximate posterior for that datapoint z(i,l) = gφ

(
ε(l), x(i)

)

where z(i,l) ∼ qφ

(
z|x(i)

)

b) Decoder: use sample z(i,l) as input for function log pθ
(

x(i)|z(i,l)
)

to generate

x(i)

z

xφ xφ ε

z = g(φ,x,ε)

Original form Reparameterised form

f f

[Kingma, 2013]  
[Bengio, 2013] 
[Kingma and Welling 2014]  
[Rezende et al 2014]

~ q(z|φ,x)

~ p(ε)

Backprop

∂f/∂φi

∂f/∂zj

≃ ∂L/∂φi

Reparameterization trick

: Deterministic node

: Random node

Figure 4: Reparameterization trick

4.3 The reparameterization trick

The naive method for computing L = Eqφ(z|x)
[

fφ(z)
]

that requires backpropagation
through random sampling process z ∼ qφ(z|x) that leads high variance . Hence, the
author uses reparameterization trick to solve this problem. That express the random

12



variable z as a deterministic variable z = gφ(ε, x), where ε is an auxiliary variable with
independent marginal p(ε). For example,

Original: z ∼ p(z|x) = N
(

µ, σ2
)

Reparameterization: z = µ + σε and ε ∼ N (0, 1)

Then,

EN (µ,σ2)

[
f(z)

]
= EN (ε;0,1) [ f (µ + σε)] ' 1

L

L

∑
l=1

f (µ + σε(l)) and ε(l) ∼ N (0, 1)

Therefor, the reparameterization trick can be summarized as follows:

a) sample ε(l) from p(ε)

b) z(l) ∼ gφ(ε), such that z(l) ∼ qφ(z(l)|x)
c) L ' fφ(x, z(l)), here the number of sample is 1

d) ∇φL ' ∇φ fφ(x, z(l))

13



5 Generative Adversarial Nets (Goodfellow et al., 2014)

GAN (Generative Adversarial Nets) is one of the most popular deep generative model
published in 2014.

In VAE model described in Section 4,

min
G

max
D

V(D, G) = Ex∼p data (x)
[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))] (50)

14



6 InfoGAN (Chen et al., 2016)

Due to the latent representations of z in GAN are usually uncontrollable and unexplain-
able, InfoGAN is proposed as an extension to Generative Adversarial Nets (GAN) (Good-
fellow et al., 2014), that is able to learn disentangled representations in an unsupervised
manner. The original GAN defines the minmax function between discriminator D and
generator G,

min
G

max
D

V(D, G) = Ex∼Pdata [log D(x)] + Ez∼Pz [log(1− D(G(z)))] (51)

The goal of InfoGAN is to learn the learn interpretable and meaningful latent represen-
tations c1, c2, ..., cL. Then, the generator network needs to consider both the noise z and
the latent code c, which becomes G(z, c).

Authors solve this problem using mutual information theory, which means mutual
information between c and G(z, c): I(c; G(z, c)) should be high. According to mutual
information theory, it can be written as,

I(c; G(z, c)) = H(c)− H(c|G(z, c))

It measures the average reduction in uncertainty about c that results from learning the
value of G(z, c). Therefore, it can be solved the following information-regularized mini-
max game,

min
G

max
D

VI(D, G) = V(D, G)− λI(c; G(z, c)) (52)

6.1 Variational Mutual Information Maximization

However, the I(c; G(z, c)) is hard to maximize, because there is no close form for P(c|x).
Using variational inference theory, it can be approximated with an auxiliary distribution
Q(c|x), hence

I(c;G(z, c)) = H(c)− H(c|G(z, c))

=H(c) + ∑
x∈G(z,c)

∑
c′∈P(c|x)

P(c = c′, x = G(z, c)) log P(c = c′|x = G(z, c))

= ∑
x∈G(z,c)

∑
c′∈P(c|x)

P(c′, x) log P(c′|x) + H(c)

= ∑
x∈G(z,c)

∑
c′∈P(c|x)

P(x)P(c′|x) log P(c′|x) + H(c)

= ∑
x∈G(z,c)

P(x) ∑
c′∈P(c|x)

P(c′|x) log
Q(c′|x)P(c′|x)

Q(c′|x) + H(c)

= ∑
x∈G(z,c)

P(x) ∑
c′∈P(c|x)

P(c′|x) log
P(c′|x)
Q(c′|x) + ∑

x∈G(z,c)
P(x) ∑

c′∈P(c|x)
P(c′|x) log Q(c′|x) + H(c)

= ∑
x∈G(z,c)

P(x)DKL(P(c′|x)||Q(c′|x)) + ∑
x∈G(z,c)

P(x) ∑
c′∈P(c|x)

P(c′|x) log Q(c′|x) + H(c)
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≥ ∑
x∈G(z,c)

P(x) ∑
c′∈P(c|x)

P(c′|x) log Q(c′|x) + H(c)

=Ex∼G(z,c)

[
Ec′∼P(c|x)

[
log Q

(
c′|x
)]]

+ H(c)

Because the H(c) is constant, then the question is to maximize the term

Ex∼G(z,c)

[
Ec′∼P(c|x)

[
log Q

(
c′|x
)]]

(53)

In The Equation 53, we still need to access to P(c|x), which is hard to compute. But we
can transform the Equation 53 into,

Ex∼G(z,c)

[
Ec′∼P(c|x)

[
log Q

(
c′|x
)]]

= ∑
x∈G(z,c)

P(x) ∑
c′∈P(c|x)

P(c′|x) log Q(c′|x)

= ∑
x∈G(z,c)

P(x) log Q(c′|x) ∑
c′∈P(c|x)

P(c′|x)

= ∑
x∈G(z,c)

P(x) log Q(c′|x) (change variable c′ to c)

= ∑
x∈G(z,c)

P(x) log Q(c|x)

= ∑
x∈G(z,c)

∑
c∈P(c)

P(x, c) log Q(c|x)

= ∑
x∈G(z,c)

∑
c∈P(c)

P(c)P(x|c) log Q(c|x)

= ∑
x∈G(z,c)

P(c) ∑
c∈P(c)

P(x|c) log Q(c|x)

= Ec∼P(c),x∼G(z,c)[log Q(c|x)]

Then, we can define a variational lower bound as L1(G, Q)

L1(G, Q) = Ec∼P(c),x∼G(z,c)[log Q(c|x)] + H(c) ≤ I(c; G(z, c)) (54)

In Equation 54, c is drawn from prior distribution (Gaussian or Categorical). x is gener-
ated by our generator. And, the Q(c|x) is computed by our auxiliary network.
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7 Sequence to Sequence Learning with Neural
Networks (Sutskever et al., 2014)

In NLP, Seq2Seq models are popular model widely used in Machine Translation, Text
Summarization, Conversational Modeling, Image Captioning, and so on. And Seq2Seq
model can be also used in time series analysis (such as stock price prediction, traffic
prediction).

DNN model achieves excellent performance in image recognition. However, the lim-
itation of DNN is that DNN requires fixed size of inputs and outputs, which is hard to
apply to those tasks with unknown inputs/outputs length, e.g., speech, text.

Figure 5: A Basic RNN model

As shown in Figure 5, the basic RNN model can be formulated as,

ht = tanh(Whhht−1 + Whxxt + bh)

yt = σ(Whyht + by)
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